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I   have   always   been   cognizant   of   end   correction   in   organ   pipes   but   never   really   understood   the  
physics   behind   it.    I   acknowledge   there   is   little   practical   application,   but   for   the   benefit   of  
readers   who   may   have   had   similar   experience   I   undertook   the   research   and   writing   of   this  
article.    The   further   I   researched   the   more   I   realized   the   complexity   of   the   involved   physics   and  
how   much   additional   research   is   needed.   

Have   you   ever   noticed   two   labial   ranks,   like   a   string   and   diapason,   planted   note   for   note   and  
adjacent   to   one   another,   and   asked   yourself   why   the   string   pipe   is   longer   than   the   diapason   pipe  
when   they   both   are   tuned   to   the   same   pitch?    The   simple   reason   is    end   correction.    It   is   the  
difference   in   pipe   length   required   for   a   desired   pitch   and   the   actual   physical   length   of   that   pipe.  
It   is   affected   by   the   scales   or   diameters   between   the   two   ranks   with   the   larger-scale   diapason  
requiring   more   end   correction   than   the   smaller   scale   string   pipe.    Hence   the   diapason,   requiring  
greater   end   correction,   is   shorter   than   the   string   but   still   sounds   the   same   pitch.    That   is   the  
simple   reason   but   does   not   address   the   ‘why.’    Having   a   lifelong   fascination   about   such   things   I  
wanted   to   demonstrate   this   phenomenon.     A   physics   teacher   long   ago   told   me   a   scientist   does  
not   ask   why   a   phenomenon   occurs   but   rather   under   what   conditions   does   it   occur?   

What   we   organ   people   refer   to   as   an   open   pipe   is   an   open-open   tube   to   a   physicist,   meaning   the  
tube/pipe   is   open   at   both   ends.    One   of   those   open   ends   represents   the   pipe’s   mouth.    Each   end  
has   an   end   correction   to   be   dealt   with.    Their   effects   combine   and   are   recognized   together   at   the  
pipe’s   open   top   end.  

The   usual   textbook   model   for   describing   standing   waves   is   to   visualize   running   waves   on   a  
stretched   string,   but   sound   waves   in   an   organ   pipe   are   invisible.    In   this   case   we   look   at   an   organ  
pipe   as   if   it   were   a   simple   tube   open   at   both   ends.    Most   standard   college   physics   text   books   do  
not   discuss   organ   pipe   physics   with   any   detail.    That   leaves   us   with   Figure   1   below,   where   Z IN  
represents   the   input   impedance   at   the   open   end   where   the   mouth   would   be   located   at   distance  
x=0   and   Z L    represents   the   radiation   impedance   at   the   pipe’s   open   top   at   distance   x=L,   where   L   is  
the   actual   length   of   the   pipe 1 .  
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Figure   1  

Rather   than   getting   caught   up   in   a   real   organ   pipe,   we   substitute   a   short   duration   air   pulse   at   the  
left   end,   x=0,   where   the   mouth   used   to   be.    A   small   air   mass   whose   pressure   is   slightly   higher  
than   atmosphere   propagates   towards   the   pipe’s   right   end.    Exactly   at   the   end,   because   this   mass  
is   no   longer   confined   within   the   pipe’s   walls,   it   rapidly   expands   and   falls   to   atmospheric  
pressure   creating   a   node,   meaning   zero   pressure   differential.    But   this   node   is   not   really   at   the  
pipe’s   end—it   is   further   away.    If   this   node   had   occurred   exactly   at   the   pipe’s   end   there   would  
be   no   sound.    Remember   this   is   an   air   mass   and   it   is   moving,   so   its   momentum   carries   the   node  
several   millimeters   beyond   pipe’s   physical   end.    The   distance   the   air   mass   travels   between   the  
pipe’s   physical   end   and   the   zero   pressure   node   is   ‘end   correction.’    Within   the   end   correction  
the   plane   wave   exiting   the   pipe   transforms   into   a   spherical   wave   radiating   in   all   directions.    In  
doing   so,   a   slight   negative   pressure   (lower   than   atmospheric   pressure)   or   rarefaction   zone   trails  
behind.    The   math   handling   that   transformation   is   beyond   the   scope   of   this   article.  

The   suction   created   draws   air   from   farther   back   up   the   pipe,   and   that   in   turn   repeatedly   draws  
air   from   even   farther   up   the   pipe.    This   results   in   a   low-pressure   pulse   having   been   reflected   at  
the   pipe’s   open   end   from   the   original   high   pressure   pulse   and   reversing   its   phase   or   polarity  
180°   (or   π   radians).    One   can   think   of   the   high-pressure   pulse   as   the   positive   half   cycle   and   the  
reflected   low   pressure   pulse   as   its   negative   half.    When   the   reflected   pulse   returns   to   the   pipe’s  
left   end,   the   mouth,   it   is   reflected   again   and   the   whole   process   can   repeat   itself.  

Figures   2   and   2a   below   graphically   depicts   the   movement   of   air   particles   and   the   pressure  
amplitude   that   moves   them.    Notice   pressure   amplitude   and   particle   movement,   that   while  
synchronous,   are   not   time   aligned.    They   are   offset   by   90°   (π/2   radians),   or   a   quarter   cycle.    It  
makes   perfect   sense   if   you   stop   and   think   about   it.    Take   a   sounding   pipe.    Remove   it   from   the  
wind   chest   and   place   your   finger   over   the   pipe   hole.    Now   there   is   no   air   flow   but   static   pressure  
is   still   there  
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In   Figure   2   the   red   waveform   represents   pressure   variance   over   the   7.64ms   period   of   one   full  
cycle   of   Tenor   C   at   130.81Hz.    The   right   cursor   is   positioned   exactly   at   the   half   wavelength  
period   of   3.82ms   where   the   pressure   waveform   crosses   zero.   

Look   at   the   green   waveform   representing   particle   volume   flow   which   maximizes   at   the   left  
cursor,   1.904ms,   when   it   crosses   zero.    This   is   where   its   slope   is   maximum,   also   the   red  
pressure   waveform’s   amplitude   is   at   its   maximum.    The   concept   may   be   hard   to   grasp   because  
you   cannot   think   of   particle   volume   flow   in   terms   of   the   waveform’s   amplitude.    You   have   to  
look   at   its   slope.    Where   it   looks   like   it   is   at   its   maximum   or   minimum   amplitude,   its   slope   is  
flat,   meaning   zero   particle   volume   flow.   

 

Figure   2  
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In   Figure   2a   the   density   of   the   black   dots   is   indicative   of   a   compression/condensed   zone,   (high  
density)   or   a   rarefaction   zone   (low   density).    The   “A’s”   and   “N’s”   indicate   antinodes   and   nodes  
respectively 9 .   

 

Figure   2a  

A   stopped   pipe   with   only   one   open   end   speaks   differently.    See   Figure   3   below.    As   with   the  
open-open   pipe   the   high   pressure   pulse   travels   down   the   pipe   (first   transit)   and   bumps   into   the  
pipe’s   rigid   stopper   and   is   100%   reflected   (second   transit),   but   this   time   there   is   no   phase  
reversal.    Returning   to   the   open   end   the   pulse   is   again   reflected   (third   transit)   with   phase  
reversal.    The   final   reflection   at   the   stopped   end   without   phase   reversal   (fourth   transit)   returns  
the   pulse   to   the   pipe’s   mouth   where   again   the   pressure   node   is   some   distance   from   the   mouth.  
This   distance   is   the   ‘mouth   end   correction 2 ’.  
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Figure   3  

Regardless   of   whether   the   pipe   is   open-open   or   open-closed   we   have   incident   and   reflected  
waves   moving   simultaneously   in   opposite   directions.    These   waves   add   together;   this   adding   is  
called    superposition.     If   the   timing   between   the   superimposed   pulses   is   just   right,   the   resulting  
wave   is   referred   to   as   a    standing   wave    and   causes   the   pipe   to   resonate   at   its   fundamental  
frequency,   which   in   this   case   is   Tenor   C.  

 

 

 

 

It   is   understandable   that   an   object   can   reflect   or   bounce   off   a   solid   object.    But   what   if   that  
object   is   just   a   mass   of   air   bouncing   off   another   mass   of   air?    What   conditions   makes   that  
possible?  

In   electrical   engineering,   Ohm’s   Law   states   one   volt   of   electro-motive   force   (V)   will   cause   one  
ampere   of   current   (I)   to   flow   through   one   ohm   of   resistance   (R),   or   V=IR.    Rearranging   this  
equation   we   have   R=E/I.    Analogous   to   organ   pipes,   this   expression   can   be   rewritten   as  
Impedance   (Z),   in   acoustic   ohms,   equals   pressure   (Pa)   in   pascals,   divided   by   particle   volume  
flow   (U),   in   cubic   meters   per   second   (m 3 /sec).    Impedance   is   a   variant   of   resistance   in   that   it  
addresses   some   imaginary   property   like    reactance    (X)     or   some   other   time   determinant   (ω t )   or  
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relative   position   (ω x )   varying   parameter.    Imaginary   numbers   exist   in   an   alternate   plane   offset  
by   90°   or   π/2   radians   from   the   plane   of   real   numbers.    In   Cartesian   coordinates   they   equate   to  
real   numbers   on   the   abscissa   (x   axis)   and   imaginary   numbers   on   the   intercept   (y   axix).    Taken  
together,   real   and   imaginary   numbers   are   referred   to   as    complex   numbers.  

As   another   example   in   electrical   engineering,   power   is   the   product   of   voltage   and   current,  
provided   voltage   and   current   are   time   synchronous.    In   DC   circuits   they   are   synchronous,   but  
frequently   this   is   not   true   in   AC   circuits   when   inductance   and/or   capacitance   are   taken   into  
consideration.    Simply   multiplying   voltage   times   current   yields    apparent    power   referred   to   as  
volt-amperes   (VA),   not   real   or    effective    power   (Watts).    It   is   the   imaginary   component,   usually  
represented   by   theta   (θ),   that   when   included   in   the   expression   for   the   apparent   power   equation  
that   identifies   the   time   difference   or   phase   between   voltage   and   current.    Therefore   effective  
power   equals   voltage   times   current   times   θ,   or    power   factor    as   it   is   usually   called.   

In   this   discussion   of   organ   pipes,   we   have   pressure,   particle   flow   and   impedance.    Because   air  
particles   have   mass   they   cannot   be   instantly   accelerated   to   their   maximum   flow   rate.    It   is  
impedance   that   is   responsible   for   slowing   particle   flow   and   it   would   then   be   said   pressure   leads  
particle   flow   by   90°   or   π/2   radians.   (See   Figure   2)  

Air   at   standard   conditions   has   impedance   and   it   is   found   by   multiplying   the   density   by   the   speed  
of   sound.    The   result,   expressed   as   acoustic   ohms,   equals   1.204   kg/m 3    x   343.8   m/s   =   413.9352  
kg/m 2    seconds.    When   we   take   this   quantity   and   divide   by   our   pipe’s   cross   sectional   area   of  
0.00693978   square   meters,   it   results   in    specific   characteristic   impedance    of   59,646   acoustic  
Ohms.    It   is   unique   and   constant   for   any   given   pipe.  

Radiation   Impedance    is   given   by   superposition   pressure   divided   by   the   superposition   acoustic  
volume   flow.    The   principle   of   superposition   is   the   phenomenon   where   two   or   more   sound  
waves   can   travel   through   a   common   medium   at   the   same   time   and   not   interfere   with   one  
another.    The   ratio   between   radiation   and   characteristic   impedances   is   key   to   determining   how  
much   of   the   incident   sound   pressure   level   is   radiated   into   the   atmosphere   and   how   much   is  
reflected   back   to   the   source.    Another   term   for   this   is    Standing   Wave   Ratio .    When   these  
impedances   are   equal,   all   available   power   is   transmitted   or   radiated.    (When   I   say   “all   available  
power”   I   mean   most   of   the   power   initially   generated   by   the   pipe   is   dissipated   as   heat   through  
friction   against   the   pipe   walls   and   air   viscosity.)    This   is   a   desirable   situation   for   ham   radio  
operators   but   not   so   good   for   an   organ   pipe.    If   all   the   sound   power   were   radiated   there   would  
be   nothing   remaining   to   be   reflected   back   to   the   pipe   sustaining   its   standing   wave.    That   would  
render   the   pipe   speechless.  
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In   part,   standing   waves   are   possible   only   because   a   portion   of   the   incident   wave   propagating   the  
pipe’s   length   and   exactly   at   its   boundary   with   the   open   atmosphere   has   an   impedance   different  
from   that   of   the   open   atmosphere.     The   laws   of   continuity   dictates   pressure   and   flow   must   be  
equal   on   both   sides   of   this   boundary.    But   clearly   they   are   not.    It   is   their   differing   impedances  
that   cause   some   of   the   incident   wave   to   return   to   the   source   from   whence   it   originated   thus  
preserving   continuity.    What   is   not   reflected   is   transmitted   across   the   boundary   and   radiated   into  
the   atmosphere.    The   summation   of   reflected   and   transmitted   sound   power   must   equal   incidence  
sound   power.   

The   transmitted   power   must   be   replenished   by   some   mechanism   in   order   for   the   pipe   to  
maintain   stable   speech.    That   brings   us   back   to   the   pipe’s   mouth   where   the   real   action   is.  

The   actual   computations   are   complex   and   beyond   the   scope   of   anyone   without   advanced   studies  
in   higher   mathematics   and   physics—and   that   is   definitely   not   this   author.    In   spite   of   my  
academic   shortcomings,   I   still   have   the   audacity   to   attempt   description   of   what   happens   when  
chest   wind   is   applied   to   a   labial   organ   pipe.  

Wave   reflection   in   an   organ   pipe   also   occurs   at   the   mouth,   and   with   that,   another   end   correction  
occurs.    Rather   than   speaking   in   terms   of   impedance,   the   resources   I   investigated   seem   to  
universally   write   in   terms   of   volume   flow    acceptance    rather   than   impedance .     Acceptance   is   the  
reciprocal   of   impedance.    In   electrical   engineering    conductance ,   measured   in   Siemens,   is   the  
reciprocal   of   impedance.    (When   I   first   studied   electronics   in   the   1950s,   vacuum   tubes   were  
king   and   conductance   was   stated   in    mhos    which   is   ohms   spelled   backwards.)  

As   the   plane   air   jet   (windsheet),   driven   by   pressurized   air   from   the   wind   chest   emerges   from   the  
pipe’s   flue   slit   it   develops   into   an   exponentially   growing   sinuous   wave   as   it   traverses   the  
mouth’s   cutup   to   the   upper   labium   at   a   speed   approximately   equal   to   half   the   speed   of   the   jet   as  
it   emerges   from   the   flue.    That   speed   is   dependent   on   chest   wind   pressure.  

..     .    See   Figures   4   and   5   below.  

            

                                 Figure   4                                                                    Figure   5  
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In   figure   6,   we   see   the   jet   flowing   at   a   “steady   velocity   of   V   meets   the   edge   of   the   resonator   so  
that   a   fraction   of   the   cross   section   S j    enters   the   resonator.    This   blends   with   an   acoustic   flow   of  
average   velocity   v m     into   the   mouth   area   S m    of   the   resonator   and,   after   a   small   mixing   length   Δx,  
becomes   an   acoustic   flow   velocity   v p     into   the   main   pipe   of   the   resonator,   the   area   of   which   is  
S p .”    S m    represents   the   part   of   the   mouth   not   inside   the   jet.    See   Figure   6   below.  

Note,   the   preceding   description   is   a   basic   distillation   of   what   is   really   a   much   more   complex  
interplay   between   the   jet   stream   and   the   pipe   resonator.  

 

Figure   6  

Figure   7   below   is   graphical   representation   of   interaction   between   the   jet   and   air   column   within  
the   pipe.    The   text   I   bolded   is   the   description   of   how   the   sound   energy   dissipated   through  
radiation   is   replenished   so   the   pipe   can   continue   sounding.  
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Figure   7  

Acoustic   admittance   of   the   jet   as   a   function   of   frequency   or   of   blowing   pressure   takes   the   form   of   a  
spiral   in   which   the   distance   from   the   origin   represents   the   magnitude   of   the   admittance   and   the  
angular   position   represents   the   phase   relation   between   the   acoustic   flow   out   of   the   mouth   of   the   pipe  
and   the   pressure   just   inside   the   mouth.   When   the   outflow   is   in   phase   with   the   pressure,   the  
admittance   lies   in   the   right   half   of   the   spiral   and   the   energy   of   the   jet   is   being   dissipated .   For   the   jet  
to   act   as   an   acoustic   generator   the   admittance   must   lie   in   the   left   half   of   the  
spiral,   which   requires   that   the   back-and-forth   displacement   of   the   jet   be   offset,   or  
delayed,   in   phase   with   respect   to   the   pressure   inside   the   mouth   of   the   pipe .   The  
wave   reflected   from   the   jet   is   then   larger   than   the   incident   wave.    When   the   admittance   falls   in   the  
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upper   half   of   the   spiral,   the   jet   lowers   the   natural   resonance   frequency   of   the   pipe;   when   it   falls   in   the  
lower   half   of   the   spiral,   the   jet   raises   the   resonance   frequency.  

For   a   given   blowing   pressure,   harmonics   created   of   the   pipe’s   fundamental   frequency   are  
dependent   on   how   the   jet   impinges   upon   the   upper   labium,   its   cutup   and   the   ratio   of   pipe   length  
to   cross   sectional   area…   its   scale.   

We   all   understand   stopped   pipes   only   generate   odd   order   harmonics   but   an   open   pipe   can   also  
generate   odd   order   harmonics   if   the   oscillating   jet   equally   flows   into   or   out   of   the   pipe   body.  
By   slightly   raising   or   lowering   the   languid   the   jet’s   trajectory   can   be   biased   to   blow   into   the  
pipe   body   with   more   or   less   amplitude.    Refer   to   Figure   5.    Asymmetry   fosters   even   order  
harmonics   as   well   as   odd   order   in   the   flow   waveform 3 .    See   Figure    8.  

 

Figure   8  

Larger   scale   pipes   have   greater   end   correction   than   smaller   scales   because   of   their   lower   “ Q .”  
Q   is   the   ratio   of   the   power   at   the   pipe’s   resonant   frequency   to   frequencies   both   above   and   below  
the   resonant   frequency   power   which   are   half   the   power   of   the   resonant   frequency.    Notice   x 1    and  
x 2     (high   Q)   are   closer   together   in   figure   9   than   in   figure   10   (low   Q)    11 .  
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                     Figure   9                                                                  Figure   10  

In   organ   parlance   Q   is   a   parameter   indicating   how   well   a   pipe   holds   its   pitch   against   any  
number   of   disturbances.    This   is   why   low-Q   large   scale   pipes   like   diapasons   and   tibias   have  
greater   vibrato   under   the   same   varying   wind   pressure   than   smaller   scaled   high-Q   strings.  
Furthermore,   it   is   the   reason   smaller   scaled   pipes   are   preferable   as   tuning   references.  

Larger   scaled   pipes   are   louder   and   have   a   strong   fundamental   but   end   correction   rapidly  
attenuates   their   harmonic   development   resulting   in   a   powerful   but   relatively   dull   tone.   

In   figure   11   below   where   the   fundamental   frequency   is   the   tallest   peak.    The   dashed   lines   are   at  
exact   harmonic   modes   in   the   pipe’s   air   column.    In   the   figure’s   (b)   section   each   of   the  
succeeding   harmonics’   amplitudes   rapidly   attenuate   because   each   peak   is   further   delayed   from  
its   natural   harmonic.    This   is   known   as    inharmonicity    and   is   the   reason   behind   the   concept   of  
note   stretching   in   stringed   instruments’   tuning.    Because   each   peak   is   further   delayed   or  
separated   from   its   associated   natural   harmonic   resonance   it   receives   ever   less   reinforcement.  

By   comparison   in   the   figure’s   (a)   section   the   smaller   scaled   string   pipe   with   less   end   correction  
(higher   Q)    has   more   of   its   harmonic   train   falling   almost   exactly   on   the   pipe’s   natural   harmonics  
resulting   in   a   long   slow   attenuation   and   thus   a   harmonic   rich   tone 4 .  
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Figure   11  

Previously   we   discussed   differences   between   characteristic   (pipe)   and   radiation   (mouth)  
impedances   being   responsible   for   how   much   wave   power   is   reflected.    In   the   electrical   analogy  
of   part   (a)   of   Figure   12   we   see   the   sum   of   those   impedances   expressed   by   their   reciprocal  
conductances   (1/Z p    +   1/Z m ).    In   part   (b)   we   see   Δ p     varying   indirectly   proportional   with   the  
pipe’s   cross   sectional   area   S p .   

Two   simplistic   electrical   analogs   first   proposed   by   Helmholtz 7 ,   then   Rayleigh 8    present   the  
interaction   between   the   pipe’s   air   column   and   its   mouth’s   jet   from   two   points   of   a   symbiotic  
relationship.      Part   (a)   “Volume   drive   involves   the   injection   of   the   jet   fluid   into   the   standing   wave   on   or  
about   times   of   maximum   compression   at   the   driving   point.    As   such,   the   jet   “sees”   the   parallel  
impedance   of   the   pipe   Q p     and   of   the   mouth   Z m ,   and   the   particle   flow   in   the   pipe   Q p    is   simply   the   sum  
of   the   jet   flow   Q j    and   the   mouth   flow   Q m ”.    Part   (b)   “For   Momentum   drive   the   pipe   is   driven   by   the  
pressure   Δp,   generated   by   the   jet   as   it   slows   and   spreads   in   the   pipe   the   jet,   transfers   its   momentum  
to   the   pipe   flow.    The   pressure   created   just   inside   the   mouth   by   the   jet   is   given   by   Δp   and   the   pipe  
flow   equals   the   mouth   flow.    The   accepted   general   form   of   Δp   is   given   in   the   figure   where   S P    is   the  
cross   sectional   area   of   the   pipe,   S j    is   the   jet   area   in   the   pipe,   v o    is   the   jet   efflux   velocity,   and   p   is   the  
density   of   air”    5 .   
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Figure   12  
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PART   2  

THE   SPREADSHEET   PART   ONE  

Part   one   relates   to   the   role   standing   waves   play   in   how   a   labial   organ   pipe   develops   its   speech  
(Lines   1-29).    The   Excel   formulae   in   column   F   are   translated   from   physics   equations   in   column  
G,   and   used   in   column   B.    The   formulae   in   columns   C   and   D   are   essentially   the   same   as   column  
B   excepting   for   changing   the   column   designators.  

The   goal   of   Part   1   is   to   establish   coefficients   of   Reflected   Power   (B25),   Transmitted   Power  
(Cell   B26   (subsequent   cell   references   drop   the   word   “Cell”   for   convenience),   Reflected   Flow  
(B27)   and   Transmitted   Flow   (B28).    Also,   values   for   Load   Impedance   (B17)   and   Input  
Impedance   (B21).  

The   S.I.   unit   for   pressure   is   the    pascal    (Pa) .     The   pressure   at   sea   level   and   25°   C   is   1.01352x10 5  
Pa   (or   equal   to   760.2mm   Hg   or     0.0001450377   lbf/inch 2 ).    Any   of   these   converts   to   101352   Pa.  
The   pressure   exerted   by   a   sound   wave   is   much,   much   less…   I   mean   really,   really,  
microscopically   less!!    Audiologists   and   physicists   express   sound   pressure   in   pascals   but   more  
commonly   used   units   include   atm   (atmosphere)   and   mm   of   Hg   (Mercury).  

Sound   pressure   is   more   commonly   expressed   in   decibels,   a   relative   scale.    Consider   that   the  
minimum   Sound   Pressure   Level   (SPL)   normal   human   hearing   can   detect   is   20   micro   pascals.    0  
dB   SPL   is   referenced   to   this   pressure.     Since   the   decibel   scale   is   a   logarithmic   scale   of   measure,  
94   dB   Sound    Pressure    Level   is   required   to   equal   one   pascal.    94dB   SPL   is   fairly   loud   but   not  
dissimilar   to   a   theatre   organ   diapason   in   close   proximity   to   that   which   a   tuner   would   encounter.  
At   the   opposite   end   of   the   scale   120dB   SPL   is   considered   the   threshold   of   pain   corresponding   to  
20   Pa.    If   Sound    Power    Level   is   of   interest,   0   dB   is   referenced   to   10 -12    watts.    Consequently  
94dB   Sound    Pressure    Level   is   approximately   equal   to   2.5   milliwatts   Sound    Power    Level.  

The   equation   in   G11   describes   the   instantaneous   pressure   of   the   incident   wave   moving   left   to  
right   whose   peak   amplitude   is   one   pascal   in   B9.    Look   again   at   G11   and   notice   the   imaginary  
exponents   indicated   by   “ j”,     –jkx    ,    jωt    and   θ,   that   occur   here   and   also   appear   in   several   other  
equations.    Analyzing    –jkx ,   the   minus   sign   indicates   the   wave   is   moving   left   to   right.    If   the  
minus   sign   is   absent,   it   indicates   the   wave   is   moving   right   to   left.     k    is   the   wave   number   derived  
in   B31,   and    x    specifies   the   position   of   the   measurement   relative   to   the   wave’s   origin.    To   the  
textbook   equations   in   B11-B14,   I   added   θ   to   those   equation’s   exponents,   also   sine   operators.   
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Describing   sound   waves   often   involves   time   and   sine   in   some   manner.    I   chose   to   divide   Tenor  
C’s   7.64   ms,   360°   period   into   five   degree   increments.    That   requires   converting   degrees   to  
radians   (degrees   x   π/180   =   radians)   and   does   so   at   G26   and   G27,   with   the   results   in   G27   (θ)  
imported   by   formulae   in   F11-F14.    The   results   of   interest   to   me   are   the   coefficients   of   Load  
Impedance   (B17),   Input   Impedance   (B22),   Reflected   Power   (B25),   Transmitted   Power   (B26),  
Reflected   Flow   (B27)   and   Transmitted   Flow   (B28).   

For   the   moment   let    x    =   0   as   in   E8.    In   Figure   1   see   that   x=0   is   where   the   mouth   normally   is.  
Exponent    jωt    establishes   the   time   base   representing   the   period   of   one   Tenor   C   cycle,   B35.  

Equation   G12   describes   the   speed   at   which   wave   air   particles   are   moving   left   to   right   due   to   the  
instantaneous   pressure   of   B11.    It   differs   in   that   it   incorporates   air’s   density   and   speed   of   sound  
which   taken   together   define   air’s   impedance.  

Now   we   consider   the   reflection   wave   represented   by   equations   G13   and   G14.    They   are   almost  
identical   to   the   incident   wave   equations   discussed   above   except   there   is   no   negative   sign   in   the  
jkx    exponents   indicating   the   particle   flow   velocity   is   now   moving   right   to   left.    Also   reflection  
wave   amplitude   is    B    (B13)   instead   of   incidence   wave   amplitude    A    (B11).  

The   next   two   equations,   G15   and   G16,   combine   equations   G11   and   G12,   and   G13   and   G14  
respectively   in   superposition.    The   significant   differences   are   that    A    and    B    pressures   are   added  
together   in   G15,   but   in   G16   particle   volume   flow    B    is   subtracted   from   particle   volume   flow    A .  

Examining   the   true   open   end   of   the   pipe,   x   no   longer   equals   0   but   rather    L,    B38,   the   actual  
measured   length   of   the   pipe.    At   x= L    we   also   find   radiation   impedance   Z L    ,   mentioned   early   in  
this   article.    Equation   G17   finds   Z L    by   dividing   superposition   pressure   G15   by   superposition  
velocity   G16   and   changing   their   exponents   from    jkx    to    jkL .  

THE   SPREADSHEET   PART   TWO  

Part   two   shows   my   process   to   calculate   end   correction   and   validate   it   against   actual   and  
theoretical   measurements   (Lines   30-71).   

To   begin,   we   need   actual   dimensional   measurements   of   the   pipe   being   studied.    These   include  
pipe   length,   pipe   diameter,   pipe   width,   mouth   width   and   cutup,   and   depth   if   applicable.    This  
information   is   entered   into   the   grayed   cells.    For   demonstration   purposes   I   entered   data   for   a  
diapason,   string   and   stopped   flute   in   columns   B,   C   and   D   respectively  
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A   Tenor   C   diapason   pipe   correctly   tuned   to   130.81Hz   (B34)   has   a   wavelength   of   2628.24mm  
(B36)   at   343.8   meters/second   (speed   of   sound)   (B32).    The   pipe’s   internal   diameter   is   94mm  
(B40).   

Stipulating   diapason   pipes   are   half   wavelength   resonators   and   ignoring   losses   due   to   fluid  
viscosity   and   wall   friction,   it   follows   the   length   of   this   particular   diapason   pipe   should   be  
1314.12mm   (B37).    But   when   making   internal   measurements   from   top   to   languid,   the   pipe   was  
actually   1140mm   long   (B37).    That   was   174.12mm   (B49)   shorter   than   simple   physics   says   it  
should   be.    Furthermore,   at   this   length   the   pitch   should   be   150.79Hz   (B50),   but   still   resonates   at  
130.81Hz.   

For   comparison   the   same   measurements   taken   of   the   violin   pipe   found   it   to   be   1280mm   long  
(C39)   and   27mm   in   diameter   (C40).    This   has   only   a   34.12mm   (C49)   difference   compared   to   its  
theoretical   1314.12mm   length   (C37).    So   what   is   going   on   here?  

Getting   past   the   physics   and   math   of   standing   waves,   impedance   and   wave   reflection   we   can  
look   at   the   practical   steps   to   quantify   end   correction.    The   term   ‘End   Correction’   is   misleading  
because   it   is   incomplete.    There   are   actually   two   end   corrections—one   at   each   end.    The   pipe’s  
mouth    is    the   other   end   and   its   correction   is   greater   than   the   more   obvious   one   at   the   top   of   the  
pipe.   

The   mouth   is   more   than   just   the   other   end   of   the   pipe   because   of   its   shape   and   possible  
accoutrements   such   as   ears,   bridge,   roller,   or   beard.    Centuries   ago   no   one   was   thinking   about  
the   math   and   physics.    Organ   builders   just   knew   that   beyond   scale,   a   set   of   pipes’   mouths   had   to  
have   certain,   shall   we   say,   modifications,   to   achieve   the   tonality   they   were   seeking.    What   has  
always   irritated   me   is   that   applying   the   common   formula   of   end   correction   equaling   the   pipe’s  
diameter   multiplied   by   anywhere   from   0.3   to   0.8   depending   on   whether   the   pipe   is   open   or  
closed.    That   is   easy   enough   to   do   except   that   the   pipe’s   actual   length   always   turns   out   to   be  
longer   than   this   formula   says   it   should   be.    On   end   correction   Wikipedia   writes,   “There   is   no  
scientifically   proven   and   accepted   value   for   the   end   correction   of   a   resonant   tube,   various  
values   ranging   from   0.3r   to   0.6r,   where   r   is   the   pipe’s   radius,   have   been   suggested   from  
numerous   disparate   experiments 6 .”    For   an   un-flanged   pipe,   researchers   Levine   &   Schwinger  
(1948)   settled   on   0.6133 a,    where    a    is   the   pipe’s   radius 10    (B55).  

A   basic   relationship   for   mouth   correction   is   the   pipe’s   cross   section   area   divided   by   the   square  
root   of   the   mouth   area 10    (B54).    However   it   is   only   reliable   with   pipes   having   simple,   sliding  
tuning   sleeves   at   the   pipe’s   open   top   end.    Accuracy   suffers   with   pipes   employing   slot   tuning  
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using   either   sleeves   or   scrolls.    An   alternative   equation   for   mouth   correction   is   found   at   B55.  
Its   result   is   very   close   to   that   of   B54.  

The   width   or   nodes   of   the   Diapason   waveform   displayed   in   Figure   13   below   is   3.82   msec  
(B38),   which   is   the   half-wavelength   period   of   130.81   Hz   (B34).    The   left   cursor   is   positioned   at  
399.8   usec   which   is   as   close   to   0.41   msec   as   my   Audio   Precision   instrument   can   resolve.    The  
right   cursor   is   positioned   at   3.731   msec   (B68).    The   span   between   the   two   cursors   is  
3.731msec-0.41msec   =   3.32msec   (B51)   (corresponding   with   the   pipe’s   true   length   of   1140mm)  
and   multiply   by   2   =   6.64msec    Take   the   reciprocal   of   6.64   msec   and   multiply   by   1000   =  
150.6Hz,   B50,   which   is   the   frequency   of   the   Tenor   C   pipe   if   there   were   no   end   corrections.  

One   other   observation   about   Figure   13:    The   red   trace   is   the   left   to   right   moving   wave   and   the  
green   trace   is   the   reflected   right   to   left   moving   wave   with   180°   phase   reversal.  

 

Figure   13  

So   after   all   this   end   correction   discussion   and   the   mechanics   making   a   pipe   speak,   what   is   the  
outcome?   
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GRAPHS  

Graph   1   (Diapason),   Graph   2   (Violin),   and   Graph,   3(Stopped   Flute)   are   derived   from   B24-B27,  
also   B16   and   B21.    In   spite   of   the   Diapason   and   Violin   pipes   being   open-open   pipes   differing  
only   by   their   lengths   and   diameters,   I   find   it   curious   that   their   respective   graphs   are   so   different.  
The   Stopped   Flute,   an   open-closed   pipe,   as   expected,   is   still   quite   different   from   the   previous  
two.  

Some   graphs   look   incomplete   because   I   scaled   the   graphs   to   show   the   most   revealing  
information.    There   is   such   a   large   range   of   y-axis   values   that   if   the   peak   values   of   impedances  
and   peak   values   of   power   and   flow   were   shown,   the   important   data   would   not   amount   to  
anything   more   than   a   flat   line.    Therefore   I   graphed   load   and   input   impedances   separate   from  
power   and   flow   and   aligned   the   two   graphs.   

Abscissa   values   are   in   degrees.    One   complete   cycle   is   360°   but   in   order   to   graph   an  
uninterrupted   single   cycle   I   extended   abscissa   values   to   720°.    If   I   had   done   that   with   the  
Stopped   Flute   I   would   have   had   to   extend   the   abscissa   to   1440°.  

Look   at   Diapason   Graph   One   and   notice   that   in   the   first   and   third   segments   load   impedance  
(orange)   is   slightly   greater   than   input   impedance   (purple).    This   means   most   of   the   wave’s  
incident   power   is   transmitted   into   the   atmosphere   and   little   is   reflected.    To   the   contrary,   in   the  
middle-third   segment   a   very   large   difference   in   impedances   exists   meaning   that   essentially   all  
the   incident   wave’s   power   is   reflected   back   into   the   pipe.  

CONCLUSIONS  

● Mouth   end   correction   has   a   greater   effect   than   top   end   correction.  
o Diapason   mouth   end   correction   was   calculated   to   be   141.06mm   (B52),   while   top  

end   correction   was   calculated   to   be   28.83mm   (B51).    Total   end   correction,  
169.83mm.  

▪ Graph   1,   Diapason,   identifies   total   end   correction   maximum   at   170mm   and  
actual   pipe   length   at   1140mm.  

o True   wavelength,   2628.24mm   (B34).    Calculated   wavelength   based   on   pipe  
half-wavelength   including   both   mouth   and   top   end   correction,   2619.78mm,   B58.   

o Frequency   of   Tenor   C,   130.81Hz   (B32).    Calculated   wavelength   based   on   pipe  
half-wavelength   with   both   mouth   and   top   end   correction,   131.23Hz   (B59).  

o Percent   error   between   true   and   calculated   wavelength   was   0.32%   (B61).  
o Percent   error   between   true   and   calculated   frequency   was   -0.32%   (B60).  
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● Similar   data   can   be   found   in   Graph   2,   Violin   and   Graph   3,   Stopped   Flute  
● Having   made   the   case   that   the   ratio   of   reflected   waves   to   transmitted   waves   varies   with  

the   ratio   of   input   impedance   to   load   impedance,   these   statements   can   be   made.  
o If   input   impedance   z2   >   load   impedance   z1,   then   reflected   wave   is   in   phase   with  

incident   wave   and   a   pressure   maximum   is   reflected   as   a   maximum.  
o If   input   impedance   z2   <   load   impedance   z1,   then   reflected   wave   is   180°   phase  

shifted   relative   to   incident   wave   and   pressure   maximum   is   reflected   as   a   minimum.  
o If   input   impedance   z2   >>   load   impedance   z1   or   input   impedance   z2   <<   load  

impedance   z1   then   reflection   is   nearly   total   and   transmitted   intensity   is   nearly   zero.  
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